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COLLISION I}YfEGRALS FOR A MODIFIED STOCKMAYER POTENTIAL

By Eugene C. Itea_, Alan R. Glueck,

and Roger A. Svehla

SUMMARY

Collision integrals were calculated for the modified Stockmayer

potential E(r) = 4c[(_/r) 12 - (_/r) 6 - _(o/r)S] ", which may be applied

to polar molecules. It was assumed that the collidimg molecules main-

tain their same relative orientation durin_ the encounter. Calculations

of the integrals were made for a large reduced temperature range and for

a range of $ from 0 to i0. The results agree with other work on non-

polar interactions (6 = 0). However, for polar interactions, the only

previously published calculations have been found to be in error and do

not agree with this work.

Assuming that the molecules interact as alined dipoles of maximum

attraction_ values for _, c_ and _ were determined for various polar

molecules by a least squares fit of experimental viscosity data. Satis-

factory results were obtained for slightly polar molecules_ but not for

more highly polar molecules such as NH S or H20. Therefore_ it appears

that the assumed model of molecules interacting at all times as alined

dipoles of maximum attraction is not satisfactory for estimating trans-

port properties of polar molecules.

INTRODUCTION

Coefficients of viscosity, thermal conductivity; and diffusion are

needed in heat- and mass-transfer calculations. Equations for calcula-

tion of these transport properties have been developed from kinetic

theory in terms of collision integrals_ _lantities that describe the

interaction between collidind molecules. When these integrals are known

it is possible to predict transport properties at elevated temperatures.

Values of these integrals (ref. i, pp. 1126-1180) have been calculated

assuming various interaction potentials. However; these integrals are

specifically for nonpolar molecules. In many cases a polar gas such as

H20 _ NHS_ or HCf is of interest, and the predictions would be in error



if these integrals were used_ because the polar character of the <_%s is

ignored.

The Lennard-Jones potential of interacti >n for spherically s_m_etric

nonpolar molecules (ref. i, p. 32), given in _quation (i), is a well-

known potential that has been successfully used for correlating transport

properties of many nonpol_" gases:

E(r) : (i)

where E(r) is the potential energy of interaction, r is the inter-

molecular distance between collidinil molecule_ E the maximum energy of

attraction_ and _ the value of r where th_ potential energy of in-

teraction is zero. For low-velocity encounters; o can be considered

the collision diameter of the molecule. (All symbols are defined in

appendix A. ) %_lese relations are shown in figure 1.

For polar molecules, as_ equation sisailar to equation (i) has been

proposed by Stock.hayer (ref. 2)_ given in a m_dified form in equations

and

E(r) : ;6 - - r3

_4(81_82_q0) = 2 cos OI cos 82 - sin @l sin 02 cos q)

Stoc_aayer actually proposed this equation using an arbitrary exponent

S; instead of 12 as given in equation (2). B mt written in the preceding

form it can be considered a Lennard-Jones potDntial modified to include

the forces between two point dipoles. _e anzles 81 and e2 are the

angles of inclination of the dipoles with the intermolecular axis_ _ is

the dipole moment of the molecule_ and _ is the azimuthal angle between

the dipoles. This is shown in fig<_e 2. However_ the molecular con-

stants o and c do not have quite the same significance as in equa-

tion (i). They now represent constants that _ould be obtained from the

interaction of a polar and a nonpolar molecul_.

Define the parameter 8 as follows:

4-_ c_3

Using this definition; equation (8) may be rewritten as follows:

E(r) = ,'t_ - - (s)
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Equation (5) is the form of the equation that Krieger (ref. 5) used to

obtain collision integrals for polar molecules. In order to simplify

calculations, Krieger suggested letting g(@l, e2,_) in equation (4) equal

+2_ corresponding to alined dipoles of maximum attraction. This assumes

the dipoles have sufficient time to orient before collision. For this

assumption, equation (_) becomes

- (6)
2ca 3

For the purpose of calculating the collision integrals using equation

(5), no specific orientation of the colliding molecules need be assumed.

If it is only assumed that the molecules maintain their same relative

orientation during the encounter, then g($1, e2_) becomes a constant_

and it is possible to assign constant values of 6. Krieger performed

his calcul_tions for positive _ values. Since a wider range of param-

eters was desired, and because of a lack of smoothness of Krieger's re-

sults_ collision integrals for positive values of 8 were recalculated.

The calculation of the integrals requires three integrations. The

first is to obtain the a_gles of deflection_ the second the collision

cross sections, and the third the collision integrals. These three in-

tegrals (ref. i, pp. $25 - 527)_ based on equations given by Chapman and

Cowling (ref. 4), are given in the next section.

The collision integrals evaluated were the _(g,2)* and the _(i,i)*

integrals. These are the ones used in evaluating first approximations

to the coefficients of viscosity_ thermal conductivity_ and diffusion of

pure gases. The significance of the superscripts is indicated in the

following section. Other integrals such as _1,2)*'", _(1,5)*, or _2,5)*

could be calculated in a similar manner. These are used in higher approx-

imations or for mixtures. But the approximate nature of the potential
assumed does not warrant their use.

The transport property equations for pure gases (ref. i, pp. 528-

5$9) are given here for convenience:

[ l]XlO7 = zGS.

[D1]XlO7 _ o.oo26sso-,/@z (s)
pa2_(l,l) _



where

D

k

M

P

T

C

self-diffusion coefficient, <m2/sec

Boltzmann's constant, ergs/°Z

gas molecular weight, g/mole

pressure, atm

temperature, oK

vi oosity,g/(om)(sec)

collision diameter_ angstrom_

collision integrals from table II evaluated at reduced

temperature, T* = kT/e

No equation is given for thermal conductivity, because_ for polyatomic

molecules_ the equation is complicated by the interconversion of trans-

lational and internal energy. In polar molecules, additional config-

urational effects are involved (refs. 5 and 6).

!
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DERIVATION ANDEVALUATION OF COLLISION INTEGRALS

Equations of Motio_

The general equations of motion for a t}o-body system in polar co-

ordinates; consisting of two identical colliding molecules A and B, and

describing the motion of A relative to B_ arc as follows:

m r2 $ m

i m(r2$? + r2 ) + E(r) i rag2
7 --7 (io)

where g is the relative velocity before th_ encounter at r = _;

b is the distance of nearest approach in th_ absence of any interactions_

m is the mass of each particle_ r is the iltermolecular separation_

and E(r) is the potential function given in equation (5). These re-

lations are illustrated in figure S.

If time is eliminated between equations (9) and (i0), the resulting

equation is

dr[r--_Zrtb _ir2E(r)] -(I/2)dO= -2 -i.... (ii)
mg2b 2



Integrating from r = a to r = _, where a is the distance of closest
approach_ results in the expression for the angle 8m, the angle of O

for r = _:

f
@m(g,b,6) = r Lb2 - i - mg2b 2 j (121

a

Since dr/de = 0 at r = a, equation (ii) becomes

a 2 4a2E(a)-- - l = o (13)
b 2 mg2b 2

which determines the lower limit a. Knowing @m as a function of g

and b, the cross section for transport can be found from the relation

(ref. i, p. 525)

FQ(1)(g,6] = 2_ (i - cos (Z) X)b db (14)

where Z is a positive integer, and

x=-- 2e_ (ms)

as shown in figure 3.

In this work the only cross sections of interest are Q(1)(g) and

Q(2)(g). Equation (14) then becomes

Q(m)(g,_)= z_ Jo (m + cos z_)b db (iSa)

_0 _

Q(Z)(g,_)= z_ (1 - cosz S_)b ab (lSb)

From the cross sections, the final collision integrals can be computed

(ref. i, p. $25) by

f_(],,S)(T,_)) = _ / e-] "2 ]f2s+3 Q(Z)(g) dY"

0

(17)

where s is a positive integer, and

r 2 = _ (is)
4_kT

The collision integrals calculated were n(1,1)(T) and Q(2,2)(T).



Introduction of Dimensionless Parameters

As a_u aid to computation, the variables can be put in dimensionless

form_ utilizing the characteristic quantities _ and a Define the

following dimensionless quantities:

+ /r - r (_

b* -- b/c

E* = E(r*)/E = 4(r *-12

Letting

_. r*-6 _

g.2 = mg2/4c

and using the values of

p. 525)

(19)

(_o)

(_l)

(22)

T+ = k_/_ (23)

Q(z) and a(_,s) for _ rigid sphere (ref. i,

Q(z) [ 1 1 + (..1)<]rigid sphere = 2 i + _ _ _d? (24)

_(},_! : ,=kJkT(s + z)_ _..rO:qrigidrzgza sphere 2 sphere

then equations (12), (14), and (17) become in _'educed form (ref. i,
p. 527)

f_ dr*{r .2 ,'*2E* _-1/2

+,(g*,_*, _):ja+ r+ %+_- 1 i_/ (2_1

bd

!
--q
qO

IJ

Q(t)* *(g ,_) =
Q(z) o
rigi_ sphere

a( z, s) *(T*, _) :
%(_,s!

igia sphere

OO

- (z - oos(Z)xb* db*

i i + (-i)_i2 I+Z

(271

2 _'o +(s + i) !T*s+_
e- (g*Z/T*) g+2S+3 Q(t) *(g*)ag*

(2s)



In particular,

_0 °°

Q(1) (g*,S)= 2 (l + cos 2_)b* db* (29a)

,'-I
(33

!

jr0 °°

Q(2)*(g*,6) = 5 (l - cos2 _%)b* db*

a(Z, l)* * jO"_
(T , 6) =

T*5

9(2;, 2)* *(T ,6) =

(29b)

e-(g*2/T*) g.5 O(1)*(g*)dg* (50a)

oo

1 f e-(g*2/T*) g.7 q(2)*(g.)_g.
5T *¢ 4

(30b)

Integration Technique

Angle of deflection integral. - The angle of deflection integral

is

em(g*,b*, s) = r._kb_2
r.2S . yl/2

In order to simplify the numerical integration, the change of variable

O -- i/r* is used in equation (26) to give

_o a_ (3l)
e_(g*,b*,6) = 4 (_pl2 p6

1 - b*2p 2 + _-_ + + 6p 5)

where A(= l/a*) is the smallest positive root of the denominator of

the integrand of equation (31):

p6 _5) b*Zp2
g,2 (1312 + + _ + i = 0

(52)

Equation (32) has either three or one positive roots (by Descartes'

rule of signs), so that finding the smallest root proves to be a problem

in some cases. Figure _ shows a typical example of this function for

g* = 0.5, 6 = l, and various values of b*.
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To find the proper root of equation (32), s_. iterative procedure
(Uspensky's method, ref. 7) is used with ghe iaitial estimate A = i/b*.
This is a good estimate for sufficiently large b*_ and also for all
b* < !, since an examination of equation (32) showsthat A is greater
than unity for all b* < i. However_in certsin cases where b* is
not muchgreater than I_ a minimumabove the p-axis exists for equa-
tion (32) in the vicinity of the initial estimate p = i/b* (e. g.,

b* = 3 in fig. 4). In this situation Uspens_y's method does not con-

verge but oscillates about the minimum. This situation can be detected

by the fact that the first derivative becomes positive during this

oscillation. When this occurs a new estimate of A > i is made so that

the first derivative of equation (52) is negalive, and the iterative

procedure is continued. This root-finding procedure has been successful

in all cases attempted in this work.

Once the proper root has been found_ the angle of deflection inte-

gral can be evaluated. It should be noted theft a pole exists at the

upper limit A. However_ it is a half-order pole if A is a single root,

and can be handled by fitting the function to a polynomial of the form

(a0 + alx + . + anxn)/xl/2 = f(x) in the _'icinity of the pole. The

remainder of the integral is well behaved and is accurately evaluated

using the Gaussian numerical integration proc_dure (ref. 8).

Referring to figure 4, it is seen that a double root of equation

(32) is possible (in this example at b* b_, where b0 _ 3.6). The

integral now no longer has a half-order pole _t A_ but rather a pole

of order i_ which leads to an integral whose zalue approaches _. Thus_

for values of b* near b_, the molecules or)it around each other an

indefinite number of times before separating. The occurrence of a

double root is not possible for all values of the parameter g*. For

value of 8 there exists a value g_(8), such that for allevery

0 < g* S g_ there exists a b_(g*,8), _here _quation (32) has a double

root_ and the phenomenon of "orbiting" occurs. For all g* > g_ no

positive value of b* exists such that equatLon (32) has a double root,

and orbiting cannot occur. Values of g_Z(B) are given in table I.

Cross-section integrals. - The cross-section integrals_ equations

(29a) and (29b), can be easily evaluated for g* > g_(8) by dividing

the integral into two parts:

(a) 0 to bR

* to(b) bR

!

qO
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where for all b* > b_, it has been found empirically that _m can be

well approximated by

_8 (33)
%(b_,g *,8) _ 7 + _.2b.3

That is to say, 8m approaches _/2 asymptotically as b*-_ _.

The first region is evaluated numerically using the Gaussian inte-

gration procedure. The second region is evaluated by substituting equa-

tion (33) for @m, expanding cos 28m in a Maclaurin series, and inte-

grating equations (29) analytically. Dropping all terms after the first

nonvanishing term gives:
DO

(i -I- cos 2em)b* db* m _,_, (34a)

G /248

(l - cos2 _Om)b+ db* _ _2b_2 (34b )

When g*< g_($), orbiting occurs and the curve 8m against b* has a

singularity at b_. For this situation the integral was broken into

five parts as in reference 9 (see fig. S):

(a) 0 to b_

(b) b_ to b 0

(c) b_ to b_

(d) b_ to b_

(e) bl_ to

Regions (a) and (d) are evaluated numerically as was done in the

first case. Also, region (e) is evaluated as before by using equations

(34). The regions (b) and (c), which are in the neighborhood of the

singularity at b_, are evaluated by curve-fitting 8m against b .2

by an empirical equation of the form

al
em = ao + (35)

b_ 2 - b .2

where a0 and a I are constants.
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If this substitution is madefor am in equations (29), the fol-
lowing results are obtained by integrating an_lytically:

(l + cos _O)d(b.2)= (b_'_- B__) + oo_ 2_

-2(_-ao){(cos 2ao)[Si(2,-2_)-_]+ (sin2_)Ci(2,-2_)})

_0 (l - cos 2 28)d(b .2) =2

(36a)

where

sin t

t
(it

a_Id

oo

cos t

t
dt

*2 *2
Similar results are obtained for the region from b0 to bN .

Collision integrals. The collision inbegrals are given by equa-

tions (SOd) and (SOb). The final integratio_ that obtains the collision

integral is divided into two parts:

(a) 0 to gg

* to *(b)_o gR

The integral over both parts is evaluated numerically using

Gaussian integration_ the only difference being in the manner in which
the cross sections Q(Z)* are calculated. This has already been dis-

cussed. The integration is terminated at some g* = g* where the in-

tectal from g_ to _ is negligible compared with th_ total integral.

For all T* ! 512, g_ is less than 120.

!

-<

<£
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DISCUSSION OF RESULTS

The results of the calculation of the collision integrals _(i_i)*

and _(2,2)* are given in table II. The values extend over a large

reduced temperature range from T* = 0.25 to T* = 512, and ten values

of 8 from 0 to i0. The T* intervals were selected for ease in inter-

polation and for comparison with other work.

Results of this paper, Hirschfelder's values (ref. i), Krieger's

results (ref. S), and Rowlinson's values (ref. lO) of _(2,2)* for

8 = 0 showed agreement. Moreover_ Hirschfelder's _(i_i)* for _ _ 0

agreed with this work. However, for $ _ 0 the results of Krieger and

this work do not agree. Values of collision integrals more than do_le

Krieger's values were obtained at low T*. At high T* the discrepancy

lessens because the effect of polarity decreases. A study of the

goniometric variable method used by Krieger indicated an error in the

limits of an integration, and that the transformation to goniometric

variables is unfeasible when 8 is greater than zero. Details are

given in appendix B. The only other work for 8 greater than zero is

unpublished calculations by Mason and Monchick, which include negative

values of 8 as well as positive. Their results agree closely with

the results of this paper.

DETERMINATION OF PARAMETERS

In order to determine the constants _ _/k, and b for various

molecules, Krieger assumed the molecules interacted as point dipoles of

maximum attraction. He then selected two experimental viscosity data

points for each molecule, and used equations (6) and (7) and his 2(2,2)*

table in connection with the experimental data to determine the constants.

His 2(2,2)* table extends over a range of T* from i to 512 and a

range of _ from 0 to 2 at intervals of 0.25. Of 12 molecules tested,

water had the highest 5_ with a value of 2.33. In general the constants

seem reasonable.

The procedure to find the constants using the present 2(2,2)*

table was the same as Krieger's method_ except that a least squares fit

of selected experimental viscosity data was used to determine the best

overall constants for a molecule. Table III gives the constants (_

c/k, 8) obtained using the present 2(2,2)* table and experimental

dipole moments (_). Table IV gives the experimental viscosities used

to obtain the constants of table III. It also contains viscosities

calculated with these constants and 2(2,2)* values of this paper. The

agreement between experimental _ud calculated data is good. The average
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deviation for all molecules is 0.5 percent_ the largest average deviation

being 1.2 percent for H2S. The explanation for the relatively large

deviation for H2S is that the experimental data are not smooth. The

constants, _ and _/k_ are different from tkose of nonpolar molecules;

a is larger and c/k is smaller. This becomes more pronounced with

increasing _ values.

No satisfactory results were obtained for mote highly polar molecules

such as NH 3 or H20 using this least-squares technique. Independent hand
calculations verified the computer results arid indicated that extending

the tables to larger values of $ would not help. Since the contribu-

tion of the dipole-dipole interaction term t_ the Stockmayer potential

is small for slightly polar molecules_ and b,_comes important for highly

polar molecules, it appears that assuming glel, 82,_) equals +2 at all

times is inadequate.

However_ another possible method for obsaining the constants _j

_ and 5 would be to treat b as a third parameter_ independent of

and _. This would mean that no specific relative orientation is as-

sumed during the encounter. Then, knowing tae dipole moment of the

molecule, it would be possible to calculate an effective g(81,82,_) for

each molecule by equation (%).

Hornig (ref. ii) suggests using a combination of three types of

interactions. Two are for resonant collisicns_ where the first has

g(81,82,_) equal to some positive number between 0 and 2, and the second

is -g(81,_2,_). The magnitude of g(81,82_) is calculated from a

knowledge of the internal quantum numbers o_ the molecules. The third

type of interaction is a nonresonant collision where the r -_ term

disappears. Mathematically, this latter in_.eraction is identical to

the Lennard-Jones equation for the interactAon of nonpolar molecules.

Therefore, according to Hornig, the effect ,_f the r -S term on the

potential can be attractive_ repulsive, or :lonexistent depending upon

the type of interaction between the two mol_cules.

Using Hornig's approach, an effective g(81,82,_) for an interaction

could then be calculated as a weighted average of the three types of

interactions_ where the weighting factor woald depend upon the frequency

of each type of collision. When collision integrals for negative

values become available_ it will be possible to try this approach.

In summary, it is concluded that the sbility to estimate transport

properties of polar gases is still in doubt. However, two possible

approaches to the solution of the problem ?ave been mentioned that may

eventually resolve the situation.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland_ Ohio_ August 12_ 1960

I
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APPENDIX A

o_
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A

a

a0_aI

b N

ci(x)

DI

E*

g

gR

SYMBOLS

l/a*

distance of closest approach of colliding molecules

constants in empirical equation (35) for curve-fitting

em against b .2

a/_

distance of closest approach of colliding molecules in

absence of any interactions

b/_

lower limit for analytic integration of Q(Z)* integrals

in vicinity of orbiting

upper limit for analytic integration of Q(Z)* integrals

in vicinity of orbiting

numerical integration limit for Q(Z)* integrals

value of b* for which orbiting occurs

_x _ cos t dtt

first approximation to coefficient of diffusion

interaction potential

relative velocity between molecules at infinite separation

before colliding

<mgZ/_cll/2

numerical integration limit for _(Z,s)* integrals

value of g* such that orbiting does not occur for all

g* > go
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k

M

m

P

Q(_)*(g%_)

r

r

si(x)

T

T*

r

E

@

%

el,e2,e

8

P

X

Boltzmann' s constant

molecular weight

molecular mass

pressure

collision cross section

a(zl/a(_)._
rlgl_ sphere

intermolecular separation betweeIL colliding molecules

r/o

x sint dt
t

0

temperature

kT/e

(mg2/4kT)i/2

parameter in modified Stockmayer potential

maximum energy of attraction between colliding molecules

in absence of dipole forces

first approximation to coefficie:It of viscosity

! (_ _ ×)
2

angle 8 at infinite separation of colliding molecules

angles describing relative orien3ation of two point

dipoles

first derivative of 8 with resoect to time

dipole moment

l/r*

collision diameter

angle of deflection in bimolecul_{r collision

I

<O



collision integral

_(Z s) Io(_, s
' /"rigi_ sphere

15
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INVALIDITY IN THE TRANSFORMATION TO GONIOMETRIC VARIABLES

In reference 3, the following statement is made on page 18: "The

value of b* = 0 (central collision), for which 2/a .6 = i + (i + g'2)i/2

corresponds to the value _ = 0." It can be shown that this is a true

statement if, and only if, 5 = 0. To accomplish this, equations (26),

(29), and (30) from reference 3, corresponding here to equations (BI),

(B2), and (B3), respectively_ are used:

b*2 4____a._12 a *-6 5a*" 3) = i
a.2 + g.2\ - -

(B1)

g* = cot Y (0 <__r <_) (B2)

cos _ (o < "'_2a *-6 : 1 + sin-----Y -- _ ": _ + y) (B3)

where equations (B2) and (B3) are the defining equations for the trans-

formation to the goniometric variables _ and Y.

If b* = 0 (the lowe_ limit of the cross-_ection integrals)_ equa-

tion (BI) becomes

7.2

a.-i2 _ a.-6 _ 5a*-5 ,a__ (B_)= 4

Let a_ be the one positive real root of this equation.
equation (B3) the _ corresponding to b*= O is

or

since sin r : (g.2 + 1)-ll2 from equation (Z2).

Then from

(B5)

If 5 = O, equation (B4) becomes

a*-12 _ a.-6 = g*_
4

(B6)

!
--,4
t..o
I-'
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The solution of this equation leads to the result

a._ 6 = I,,_ (i + @-2)1/2
2

and_ since an is positive,

_-6= i + (1+ g_ll/2 (B7)

If this quantity is substituted in equation (B6), the result is

= arc cos i

or

_=0

When 5 = 0, _ = 0 corresponding to b* = 0.

Next, assume _ = O. Then from equation (B5),

1)/(g_2+ i)i/2=i

Solving for a_ -6 and substituting in equation (B4) give

g_ + i)I/_+ _
2

(_2 + l)i/2+ i g_ + i)I/2+ _ o
2 5 2 - 4 =

(B8)

which, after combining like terms, results in

g_2 + + _i/2i)i/2 = 0 @9)
2

This implies either 5 = 0 or (g.2 + 1)1/2 + i = 0. Since the latter

quantity is never zero for all real g*_ 5 = O. Thus it has been shown

that _ = 0 corresponds to b* = 0 if, and only if, _ = 0. In ref-

erence 5 _ = 0 is used for the lower limit of the cross-sectlon inte-

gral for all 5. This is therefore incorrect.

However, even if the correct lower limit (eq. (BS)) for _ had

been used, the transformation to _ (eq..(B5)) does not always lead to
a real value for _ corresponding to b = 0. An example will suffice
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to illustrate this fact. Take $ = i
.Substituting in these values for g

equation (B4) becomes

and g
and

= _ and calculate
_nd letting a*-3 = C,

_o

CA - C2 - C - i0 = 0 (BlO)

The solution of equation (BlO) for the one real, positive root is

C = 2. Therefore_ 2C 2 = 2a *-6 = 8. Substituting this value in equa-

tion (B5) leads to the result

7
= a_c cos

Thus in this particular example, no real _ corresponds to b* = O.

Therefore, the transformation to the goniometric variable _ by equa-

tion (B3) is not valid for 5 _ 0.
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Molecule

TABLE III. - FORCE

0

CO 3. 668

NO 5. 469

HI 4.264

CHCl 3 5. 513

COS 4. 596

KBr 5. 858

CHsOCH 5

CHRCI 2

H2S

C2H50H

HCf

4. 796

5. 323

4. 054

5. 296

4. 164

CONSTANTS

c/k

93.8

120.0

252.5

256.7

209.3

161.2

125.1

121.5

88.4

47.8

23.6

FOR POLAR MOLECULES

O. 01(

• 01(

• 03:

.08

• 10

.25L

• 45

• 48

• 5_

1.416

2.47

_, Debyos
(ref.12)

0. i12

.15

.42

1.013

.70

.80

1.30

1.57

.92

1.69

1.079

bJ
!
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